Group theoretical construction of planar noncommutative phase spaces
نویسندگان
چکیده
منابع مشابه
Noncommutative Lp spaces, Operator spaces and Applications
Overview of the field. NoncommutativeLp-spaces are at the heart of this conference. These spaces have a long history going back to pioneering works by von Neumann, Dixmier and Segal. They are the analogues of the classical Lebesgue spaces of pintegrable functions, where now functions are replaced by operators. These spaces have been investigated for operator algebras with a trace, and then arou...
متن کاملGroup Theoretical Approach to the Construction of Conformal Field Theories
A conformal field theory (CFT) is a quantum field theory which is invariant under conformal transformations; a group action that preserve angles but not necessarily lengths. There are two traditional approaches to the construction of CFTs: analyzing a statistical system near a critical point as a euclidean field theory, and in holographic duality within the context of string theory. This pedago...
متن کاملGroup-theoretical construction of extended baryon operators in lattice QCD
The design and implementation of large sets of spatially extended, gauge-invariant operators for use in determining the spectrum of baryons in lattice QCD computations are described. Group-theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. The operators are constructed to maximize overlaps with the low-...
متن کاملDequantization of Noncommutative Spaces and Dynamical Noncommutative Geometry
The purely mathematical root of the dequantization constructions is the quest for a sheafification needed for presheaves on a noncommutative space. The moment space is constructed as a commutative space, approximating the noncommutative space appearing as a dynamical space, via a stringwise construction. The main result phrased is purely mathematical, i.e. the noncommutative stalks of some shea...
متن کاملDifferential Forms on Noncommutative Spaces
This paper is intended as an introduction to noncommutative geometry for readers with some knowledge of abstract algebra and differential geometry. We show how to extend the theory of differential forms to the “noncommutative spaces” studied in noncommutative geometry. We formulate and prove the Hochschild-Kostant-Rosenberg theorem and an extension of this result involving the Connes differential.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2014
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4862843